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1 
INTROD UCTlON 

The Phase I Space Station, known as Freedom, is regarded as an essential element of NASA's 

continuing effort to ensure America's future in space. The station will play a key role in support of 

human exploration of the solar system. The station will also be an orbiting research laboratory for; 1) 

the conduct of science, 2) the development of technology, and 3) the stimulation of commercial 

space enterprises. Freedom is intended to be a permanently manned orbital facility, operating 

continuously for 30 years. The Space Station Freedom will be designed to evolve with time as needs 

and objectives change, to provide greater capability for ambitious missions and objectives. As new 

requirements and technologies emerge, Freedom will change to accommodate them. Specific areas 

include; available electrical power, the number of pressurized modules, experimental and cryogenic 

propellant storage/management capacity, and the number of attached external payloads. The 

evolution of the station is also viewed as a key element for Mars, lunar, and other exploration missions 

(Reference 1-1). 

The Phase I1 or evolutionary Space Station may be used for a variety of purposes in support of NASA's 

Lunar, LEO, Mars and other space exploration missions. One of the most critical issues involves the 

storage, handling, and thermal/fluid management of the various fluids required at the station. 

Cryogenic propellants comprise the majority of the fluid requirements, and portions of this study were 

based on propellant storage system concepts developed under NASA-MSFC's Long Term Cryogenic 

Storage Facility System Study (References 1-2 through 1-5). 

._ 

The primary purpose of this study was to define fluid storage and handling strategieshequirements for 

various specific mission case studies and their associated design impacts on the Space Station. 

Study objectives were accomplished by the following five tasks: (1) an inventory of all fluids expected 

to be associated with the Space Station during its initial and evolutionary phases, (2) identification of 

fluid management requirements such as storage, supply, transfer, handling, thermal, and safety 

issues, (3) development of several fluid management strategies and concepts for fluids 

accommodation to minimize "scarring" of the Space Station and its operations, arid (4) identification of 

impacts to the Space Station design and operation systems and subsystems identified in Task 3 and 

the resulting design features to be included in the Space Station Phase I design to allow future fluid 

requirements, and (5), performing the required supporting activities; periodic progress and financial 
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reporting, status reviews, and coordination meetings. 

Within the framework of the five Tasks outlined above, the restructuring of study objectives occurred 

interactively following Evolutionary Space Station working meetings, as requested by NASA-LeRC, to 

allow the maximum benefit of study results to NASA's overall Evolutionary Space Station program. 

These working meetings were hosted by NASA-LaRC to encourage the transfer of relevant 

information between NASA center contractors, and maintain uniformity with respect to NASA's overall 

program goals. 
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2 
FLUID REQUIREMENTS AT THE 

IOCIGROWTH SPACE STATION 

This section describes the fluid requirements for the baseline and growth Space Station to support 

various functions and missions. These include supporting attached and free flying experimental 

payloads, OMV, STV, Planetary Initiative (described in Reference 2-1) and Code Z (Mars, Lunar, and 

other exploration) missions. The Code Z missions used for this study were based on Reference 2-2, 

and were four in number; 1) a human expedition to Phobos (Case study l), 2) a human expedition to 

Mars (Case study 2), 3) the establishing of Lunar Observatories (Case study 3), and 4) using the Moon 

as a Lunar Outpost to early Mars Evolution (Case study 4). Reference 2-2 contains a detailed 

description of the Code Z mission models. The Space Station Fluid Requirements/lnventory data 

sheet (Table 2-1) shows a summary of the fluid requirements including the fluid type, phase, quantity, 

storage and delivery concept . The following sections will focus on the particular fluid support 

requirements for the individual missions. 

2.1 EXPERIMENTAL PAYLOAD FLUID REQUIREMENTS 

Some of the experimental payloads that are planned for the Space Station will require fluid 

replenishment. The servicing requirements for these payloads have been identified in several 

references including the Space Station Servicing Data Book generated by the BDM Corporation for 

the Office of Space Science and Applications (Reference 2-3). This data book is the most 

comprehensive of the fluid requirements sources. The SUMIT Database (DB), which is intended to 
collect all the Space Station user information into one DB that will be accessible to all "cleared users" 

via modem and personal computer, was not available at the time of the experimental fluid 

requirements identification. Also, the Evolution Mission Model (by McDonnell Douglas) DB has very 

little fluids information regarding experimental payloads. Therefore, a baseline of the experimental 

payload fluid requirements was established primarily based upon the BDM data books. 

This baseline was used to facilitate the investigation of fluid management operational, safety and 

design concerns. Table 2-2 summarizes the baselined experimental payload fluid servicing 

requirements. This table shows the payload and its servicing interval, fluid type, quantity and servicing 

scenario. Although the actual experiment manifest for the Space Station has not been established, 
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the payloads identified in the baseline provided a representative assortment of servicing 

requirements that was used to examine fluid management issues such as storage, supply, transfer, 

handling, thermal and safety. 

Figure 2-1 graphically summarizes the individual fluid types and amounts needed during each year to 

support the US experimental payloads. It is apparent from this Figure that liquid helium and hydrazine 

will be in the greatest demand. Table 2-3 presents a timephased look at the individual experimental 

fluid inventory requirements for Space Station users including US and international experimental 

payloads. The international experimental payload fluid requirements are assumed to be 30% of the 

US. This table also shows the total fluids needed per year and develops a fluids carrier schedule 

based upon the fluid carrier designs discussed in Section 3. The schedule has been arranged to 

include an appropriate number of resupply launches. Figure 2-2 graphically presents the number and 

type of fluids carriers needed during each year to support both US and International fluid needs. The 

previously mentioned data support the experimental payloads only. These requirements are assumed 

to remain constant regardless of the OMV, STV and Code Z missions selection. 

The attached payloads primarily use rare gases for their sensors and instruments. The ASTROMAG, 

however, primarily uses superfluid helium for magnet cooling. 

The free-flying experimental payloads require hydrazine for propulsion, nitrogen for attitude control, 

and also liquid helium for sensor/instrument cooling. 

The greatest demands are for hydrazine and helium, which comprise 49 and 37% of the fluid needs, 

respectively. 

The delivery schedule indicates that more liquid nitrogen is being delivered than is required. This was 

done to more efficiently utilize the fluid carriers, and also to provide additional nitrogen for unforeseen 

users (nitrogen is one of the most commonly used laboratory gases for purging and cleaning of 

environments). 

2.2 OMV PROPELLANT REQUIREMENTS 

Even though the OMV is currently designed to be serviced from the Shuttle, basing an OMV at the 

Space Station is practical, efficient and "assumed" by a number of studies to exist. Therefore, a Space 

Station based OMV concept was assumed for the purposes of this study. The OMV requires 

hydrazine, bi-prop, and nitrogen. Free-flying experiments also require hydrazine, which also makes 
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Table 2-1. Sources for Space Station Fluid Inventory 

SOURCE 

I I I 
SOURCES FOR SPACE STATION. FLUID REQUIREMENTS. 

DESCRIPTION TYPE PHASE STORAGE CONCEPT DELIVERY 

Ref 2-2 

Ref 2-2 
Pg 2-114 

2 - 3  
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LU-NAR OBSERVATORIES 02/H2 7:l Liquid Unspecified H LLV 

MANNED PHOBOS 02/H2 7:l Liquid Unspecified HLLV 
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hydrazine storage at the SS desirable. 

Table 2-4 (Tables 2-5, 2-6 and 2-7 contain the same OMV propellant data) shows the amount of OMV 

propellants required to support the flights identified. Although the number of flights (estimates from 

Reference 2-2) do not extend beyond 2004 and are probably fewer than would be realized, they 

provide a basis for the study of the impact upon Space Station fluid management requirements. The 

number of OMV flights will probably be significantly greater when Station operations, logistics using 

expendable launch vehicles, satellite servicing and proximity transportation is accounted for. Data for 

the fluid requirements of these types of missions is not currently available. Figure 2-3 graphically 

illustrates the OMV fluid requirements. 

2.3 SPACE TRANSFER VEHICLE PROPELLANT REQUIREMENTS 

The STV will be used to retrieve and deliver payloads from the Space Station to higher energy orbits 

(e.g. geosynchronous). The propellant requirements for these missions are based upon NASA's 

Mission Model for the OTV (Revision 8) with all Lunar and planetary missions removed. The STV 

reference configuration is the "MSFC synthesized" version (see Figure 2-4). The propellants are 

liquid oxygen and hydrogen, burned at a 6:l mass ratio. 

The STV propellant requirements are shown in Table 2-4 (Tables 2-5, 2-6 and 2-7 contain the same 

STV data). Although the STV model used in this study is larger than the current STV flight estimates, 

the addition of DOD missions and Mission-to-Planet-Earth geosynchronous fluid requirements will 

result in an increase in the STV propellant requirements. 

Accounting for the Mission-to-Planet-Earth Polar Orbiting Platform (POP) servicing would require 

extra propellant storage at the Space Station. However, servicing from the Space Station is not 

currently planned because polar orbits are most efficiently accessed from the ground (minimum delta 

V and propellant requirements). Therefore POP servicing from the Space Station was not considered 

in this study. Figure 2-5 graphically represents the STV propellant requirements. 

2.4 PLANETARY INITIATIVES 

This mission model was taken from Reference 2-1 and is the augmented mission program as 

recommended by the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. 

The Planetary Initiative missions are accomplished with the STV, and the propellant requirements are 

L02/LH2. Any additional fluids associated with these missions are assumed to be part of the payload 
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(and not serviced/replenished at the SS). These propellant requirements are shown in Table 2-4 

(Tables 2-5, 2-6 and 2-7 contain the same Planetary Initiative data) for the years of the individual 

missions launch and/or operation. The total propellant requirements for the STV Mission Model are 

more than an order of magnitude greater than the propellants required for the Planetary Initiatives. 

The Planetary Initiative fluid requirements are graphically presented in Figure 2-6. 

2.5 CODE Z MISSION FLUID REQUIREMENTS 

The Office of Exploration (Code Z) case studies are defined in Reference 2-2. This document 

identifies the propellant requirements for the Human Expedition to Phobos, Human Expeditions to 

Mars, Lunar Observatories and Lunar Outpost to Early Mars Evolution missions. The Space Station 

fluid support requirements are separated into four individual schedules, each one based upon a 

single Code Z mission, since it is very unlikely that two or more Code Z missions will be done 

concurrently. 

An identical set of combined SS experiments, OMV, STV and Planetary Initiative fluid requirements 

are included with each of the Code Z mission models. The new 1989 Code Z missions with the 

upmass to LEO limit of 570 metric tons (mt) per year were not used in this analysis because of the lack 

of propellant requirements. 

Figure 2-7 illustrates the relative propellant quantity and timephasing requirements of the. individual 

Code Z missions. Although some of the fluid requirements for the Code Z missions are needed at 

locations other than LEO (Le. Lunar vicinity) it is assumed that the fluids will "go through" the Space 

Station or a co-orbiting depot before reaching their final destination. It is clear from this comparison 

that Mars Expedition propellant requirements are the greatest of the Code Z mission propellant 

require me nt s. 

Due to the large quantities involved it is unlikely that any of the Code Z propellants will be stored at the 

Space Station (due to operations, safety, logistics, dynamics, and stationkeeping considerations), 

unless the primary purpose of the SS becomes that of a transportation node. 

2.5.1 MANNFD PHOBOS MISS ION. The Manned Phobos Mission propellant requirements are 

defined in Table 2-4, and total approximately 1500 metric tons between the years 2000 and 2003. 

This mission has the earliest of the Code Z fluid requirements, and therefore the space infrastructure 

must be capable of supporting fluid storage, resupply and transfer by the year 2000/2001. However, 

the fluid requirements only run through the year 2003, and hence may not justify the development 
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and construction of a propellant storage facility in LEO. The elimination of such a facility could reduce 

the overall life cycle costs of the mission, but this decision would require a detailed trade study. 

Reference 1-3 includes a discussion of some the important issues and elements required for such an 

approach. 

2.5.2 MANNFD MARS MISSION. The Manned Mars Mission propellant requirements are defined in 

Table 2-5. This mission requires the largest quantity of fluids, with a total greater than 5400 metric 

tons between the years 2005 and 201 1. The peak year, 2006, requires in excess of 1400 metric tons 

of fluids to be delivered to LEO. This requirement places an enormous demand upon launch and 

space facilities that must be available by 2006. 

2.5.3 M A R  OBSFRVATORY. The Lunar Observatory propellant requirements are defined in 

Table 2-6. This mission has the most evenly distributed fluid resupply requirements. Two years of 

178 metric tons and nine years of 95 metric tons (per year)of fluids, for a grand total of 201 1 metric 

tons between 2004 and 201 4, gives this mission the most consistent propellant resupply schedule of 

the Code Z missions. 

2.5.4 JJNAR OUT POST TO FAR1 Y MARS FVOl UT ION The Lunar Outpost to Early Mars Evolution 

propellant requirements are defined in Table 2-7. This mission has the "longest" timephased fluid 

requirements. The first year of fluid requirements is 2003 with moderate (relative to other Code Z 

missions) fluid requirements continuing through 2018. Between the years of 2003 and 2018, a total 

of 2250 metric tons of fluids are required for this mission model. The fluid storage facility to support 

this mission model will have to be designed for long life and extended space exposure. 

2.6 FLUID REQUIREMENTS SUMMARY 

Several observations can be made following the definition of all SS related fluid requirements. First, 

there are a large number of fluid users, which require a variety of fluids and deliveryktorage concepts 

and schedules. Secondly, the propellants required for NASA's STV, Planetary, and Code Z missions 

are enormous. 

The storage methods must accommodate fluids ranging from a high pressure gas to a subcooled 

liquid (and superfluid helium). The requirements begin in the ,ear 1994, reach a maximum of nearly 

1600 metric tons in the year 2008 (for the Mars Expedition), and "trail off" to the year 2018, as 

currently planned. 
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3 
FLUID MANAGEMENT OPTIONS 

This section describes alternate methods of providing fluid (both SS and co-orbiting platform) users 

with fluid requirements. Since the storage method design process for hazardous and flammable fluids 

at the SS will likely be driven by safety concerns (human environment), a safety analysis provided an 

initial basis for comparison. Location trade matrices are presented for individual experiments, which 

consider operations, safety, and performance. 

Alternatives for the "experimental users" included; bottle changeout (ORUs recharged either at the 

SS or replaced by full ORUs delivered from earth by the STS), using hard lines connecting fluid 

containers or carriers with each individual user, or transporting users to a fluid carrier (centrally located 

on the SS) for refilling. 

Conceptual design concepts of fluid carriers have been defined to allow transport of all fluids from 

earth to the SS, to support the fluid requirements. Figure 3-1 contains an illustration and description 

of the ASTROMAG experiment, which will be attached to the baseline SS boom. Figure 3-2 includes 

the same for the LDR experiment, which will be a free-flying experiment, and is assumed (with several 

other free-flyers) to be serviced from the SS for this study. The following experiments were 

considered in this study: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8.  
9. 
10. 
11. 
12. 
13. 
14. 

ASTROMAG - Astrophysics Magnet Facility 
DXS - Diffuse X-Ray Spectrometer 
LAMAR' - Large Area Modular Array 
STO/SIG' - Solar Terrestrial Observatory/Solar Instrument Group 
STO/PIG' - Solar Terrestrial Observatory/Plasma Instrument Group 
STO/SS - Solar Terrestrial Observatory/Space Station Attached 
AXAF- Advanced X-Ray Astrophysics Facility 
GRO - Gamma Ray Observatory 
LDR - Large Deployable Reflector 
SBAR - Space Based Antenna Range 
SIRTF - Space Infrared Telescope Facility 
3s  - Space Station Spartan 
STO/POP - Solar Terrestrial ObservatorylPolar Orbiting Platform 
XGP - Experimental Geo Platform 

Denotes experiments which are planned to be attached to the IOC SS. 

Cryogenic propellant provisioning is treated separately, and includes a discussion of propellant 



TITLE: Particle Astrophysics Magnet Facility (ASTROMAG) 

OBJECTIVE; 1) Study the origin and evolution of matter in the Milky Way, 2) Search for 
antimatter and dark matter candidates, and 3) Study the origin and acceleration of the 
relativistic particle plasma and its effects on the dynamics and evolution of the galaxy. 

DESCRIPTION: ASTROMAG is a high energy astrophysics tool. The primary 
components consist of a core magnet, a liquid helium dewar and particle tracking 
detectors. 
LOCATION: Space Station attached payload. 

SERVICING REQU I RE ME NTs ; 
Co nsu m a bl e replenishment 

-Su pe rf I uid helium 
-Rare gas mixtures (possibly) 

Ex pe ri men t replace men t and/o r u pg rade 
Instrument calibration and alignment 

IDENTIFIED CONSUMABLE REPLENISHMENT APPROACH: 
Superfluid helium- Translate tanker to ASTROMAG attachment site on the Space 
Station. 
Rare gas- Modular gas bottle changeout, recharge existing gas bottle or use sealed 
instruments and replace them entirely. 

Figure 3-1. ASTROMAG Space Station Attached Experimental Payload 
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provisioning from the SS or from a co-orbiting platform. In addition, detailed thermodynamic analyses 

of LH2 and LO2 transfer and storage processes have been reported. These results illustrate the wide 

range of steady-state and transient tankset performance for a variety of operating conditions, and 

provided the basis for propellant transfer operation scenarios included in Section 4 of this report. 

3.1 SYSTEM SAFETY ISSUES, REQUIREMENTS, AND IMPLICATIONS 

The System Safety effort during the conduct of this study involved several different types of activities. 

Included were information and data searches, trade studies, and a Preliminary Hazard Analysis (PHA). 

References 3-1 through 3-13 were used to provide a basis for the safety analysis. The experiments 

listed previously were evaluated. 

3.1.1 PRFl IMINARY HA7ARDS ANA1 YSlS, GDSS used NASA's typical methodology of system 

safety analyses ( Reference 3-10, Instructions for Preparation of Hazard Analyses for the Space 

Station) to evaluate the hazards associated with fluids in close proximity to the space station and also 
fluids which may be somewhat isolated from the station. To begin the process, GDSS initiated a 

preliminary hazard analysis as described in Refer. 3-10. The analysis is presented on the following 

PHA worksheets (Preliminary Hazards Analysis 1 through 5), in Tables 3-1 to 3-5. 

3 - 4  



PHANO. 1 ---1 
FLUIDS STUDY PRELIMINARY HAZARD ANALYSIS 

MISSION PHASE: ENGINEER: 

SU3SYSlEMoROPERATON: DATE: 

EFRCTNTPI: 

~ ~ 

HAZARDOUSCONDITKW 

quid impngement on crew, 

)ayloads and space vehicles. 

HAZARDCAUSE 

I. Spill during handling. 

I .  Inadvertent venting. 

3 .  Container leak/rupture. 

- 
HAZARD 

mEcT 
Injury to 
E r e w  

- 

Equip 

nent 

damage 

- 

rmD j SAFEP/REQUlREMENTS 

1. Crew should wear 

protective suit during 

handllng. 

2. fluids should be stored 

TBD discrance away born me 

habitable module and other 

critical equipment. 

3. Blast shields should be 

povided around fluid tanks. 

4. All venting should be 

directed away from dtical 

equipment and personnel 

accesslevacuat ion routes . 

TB D 

Note: Hazard Levels; CA-Catastrophic, CR-Critical 

3 - 5  



=ET 1 a= 1 PHANO. 2 
FLUIDS STUDY PRELIMINARY HAZARD ANALYSIS 

MISSION PHASE: 

suasYsTEMoRoPERATK3N: 

EFFECTIVITY: 

-ire/Explosion 

HAZARDCAUSE 

1 .  Mixing of fuel and 

2xidizer in the presence of 

an ignition source. 

2. Static electricity due to 

iigh fluid veloaties. 

3. Oxidation of the exposed 

'luid contacting surfaces. 

4. Ignition of materials in the 

rianity of fluids. 

- 
WIZARD 

EFFECT 
"jury to 

:rew. 

- 

Image 

o equip 

nent 

HAZARD 

LEVEL 
CA 

ENGINEER: 

SAFETY RKXIIREMEMS 

1. a. Fuels and oxidizers must 

be sotred separately. 

1. b. Blast shields must be 

provided around the tanks. 

1. c. Fluid mixing should be 

prevented during venting. 

2. All systems should be 

bonded to prevent 

accumulabon of static 

electriaty. 

3. Only compatible materials 

should be used. 

4. Only non-flammable 

materials should be used. 

HAZARD- 

TBD 

Note: The term "Bonded" in this case refers to the electrical grounding of all components. 
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Table 3-3. PHA 3, Loss of Habitable Environment 

HAZARDOUSCCNDmON 

-06s of habitable environment 

PHANO. 3 
FLUIDS STUDY PRELIMINARY HAZARD ANALYSIS 

WZ4RDCAUSE 

1. Contaminatiowcorrosion 

from fluid. 

2. Impingement of fluid on 

critical support equipment. 

3. Firelexplosion resulting 

in destruction of habitat or 

MISSION PHASE: 

suBsYsrEMoRoPERATw3N:  

EFFECTIVTTY: - 
HAZARD 

EFFECT 
Loss Of 
- 
U W  

life 

- 
HAZARD 
LEVEL 

CR 
- 

ENGINEER: 

SAFEpl REQUIREMENTS 

. All fluids should be located 

'BD feet from habitable 

nodules. 

!. Blast shields should be 

rowded around habitable 

nodules and/or fluid tanks. 

I. All venting should be 
lirecfed away from the 

iabitable modules. 

TB D 
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Table 3-4. PHA 4, Fluid System LeaWRupture 

CR 

PHANO. 4 1 
FLUIDS STUDY PRELIMINARY HAZARD ANALYSIS 

MISSION PHASE: ENGINEER: 

SUBSYSTEMOROPERATCN: DATE: 

EFFECTIVITY: 

1. Crew should wear suits 

compatible with fluids. 

2. Tanks must be provided 

with meteor protection. 

3. Plans shall be developed 

to remove damaged 

containers. 

4. Redundant vent system 

should be used. 

HAZARDOUSCClrlDITKN 

3uid System LeaWRupture 

HAZARDCAUSE 

1. Failure of seals at 

interface during transfer. 

2. Meteor impact on 

containers. 

3. Container damage during 

handling. 

4. Failure of venting system 

to reduce wntainer internal 

pressure. 

- 
HAZARD 

ERECT 
"jury to 

:rew. 

- 

lamage 

o equip 

nent 

HAZARD 

LEVEL 
SAFETY RKXllREMENTS HAZARD- 

TED 
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W N O .  5 =I3 1 CF 1 
FLUIDS STUDY PRELIMINARY HAZARD ANALYSIS 

BJGINEER: 

DATE: 

Release of corrosive. toxic, 

'lamrnable. or cfyogenn: fluid 

HAZARDCAUSE 

. Normal or inadvertent 

entlng. 

I. container 

aakagehupture. 

I. Spill during handling. 

. Failure of venting system 

J reduce conatiner internal 

iressure. 

njufy to 

: rw.  

lamage 

o equip 

nent 

- 

HAZARD 
LEVEL 

CA 
- SAFETY REQUIREMENTS 

, . Leak detection system 

ihould be installed. 

!. Blast shields should be 

rovided around fluid tanks. 

1. Spill handling procedure 

ihould be developed for each 

bid. 

I. Redundant vent system 

ihould be provided. 

TBD 

The Preliminary Hazard Analysis (PHA) has identified areas where additional work and analyses will 
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have to be accomplished in order to understand the hazardous events more fully and determine what 0 
design requirements will be necessary to control the hazards to an acceptable level. 

1. Hazards associated with spills in the microgravity and vacuum 

environment. 

2. Contamination or explosion that may lead to the loss of habitable 

environment. 

3. Safe quantitieddistances for the separation of fluids during storage. 

am 
Spills represent a significant hazard to Space Station personnel and hardware. Hazards to personnel 

exist through inadvertent contact and subsequent contamination of the EVA suit from hazardous 

fluids during handling of containers or transfer of fluids. Personnel will also be exposed to the 

hazardous fluids during spill removal and cleaning operations. Spills of hazardous fluids could result 

from various causes as follows: 

a. Damage to containers during transfer to and from Space Station based experiments. 

b. Overfilling and excessive venting. 

c. Leakage or rupture of containers, lines, or plumbing. 

d. Inadvertent opening of fill/drain valves or relief valves. 

Spills may result in a gaseous cloud that remains in the vicinity of the leak or migrates to other areas 

(such as the habitable modules). Spills may be in a solid or liquid form depending on the temperature 

and pressure of the vented fluid and the environment. 

The following are the recommended safety requirements: 

a. Fluid separation is required to isolate the spills. Ideally, non-compatible fluids should not be 

stored together and fuels and oxidizers should not be stored together. 

Hazardous fluids should be stored at least TED (to be defined by possible future NASA 

studies) feet from habitable modules and critical support equipments. 

Spill clean-up procedures should be developed. 

b. 

c. 

Contaminatiou 
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Contamination of life support equipment or explosion of gases within a module could lead to a close 

down of one or more habitable modules. The following are the recommended safety requirements: 

a. Sufficient structure should surround the fluid tanks to prevent blast fragments damaging 

habitable modules or other critical equipment. 

All fluid venting should be directed away from habitable modules. 

Fluids with the highest explosive power should be located at the farthest distance from the 

habitable modules. 

b. 

c. 

Safe Quantltles and SeD- 

To reduce the hazards resulting from an explosion of the fluid tanks, criteria is required for safe 

quantitieddistances for storage on Space Station. A preliminary review indicates that this criteria 

exists only for the storage of fluids in earth environment. Tables 3-6, 3-7 and 3-8 summarize this 

information (this information was taken from Reference 3-2). 

.. 

Table 3-6. Propellant Hazards and Compatibility Groups 

1. Group I: Relatively Low Fire Hazard 
2. Group I I: Fire Hazard 
3. Group I I I: Fragment and Deflagration Hazard 

4. Group A: Strong Oxidizers 
5. Group C: Fuels 
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Table 3-7. Separation Distances for Hazard Groups, I - I I - I I I (In Terrestrial Environment) 

POUNDS OF PROPELLANT INHABITED 
INTRAGROUP 

BUILDINGS 
OVER NOT OVER DISTANCE - FT DISTANCE - FT 

0 100 
900 1,000 
9,000 10,000 
90,000 100,000 

30-60-80 
60- 1 20- 150 
90-1 80-240 
135-270-365 

25-30-30 
45-60-60 
70-90-90 
105-1 35-1 35 

COMPATIBLE FLUIDS STORAGE: 

FOR SAME HAZARDS GROUP: USE 1NTRAGROUP DISTANCE 

FOR DIFFERENT HAZARD GROUP: USE GREATEST INTRAGROUP DISTANCE 

INCOMPATIBLE FLUIDS STORAGE: 

USE GREATEST INHABITED BUILDING DISTANCE 

PIPELINES: 

MINIMUM OF 25 FT FROM INHABITED BUILDINGS FOR TRANSFER OF FLUIDS IN GROUP II 

AND 111 
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Table 3-8. Separation Classification of Space Station Fluids 

a. NON-FLAMMABLE b. FLAMMABLE C. NON-FLAMMABLE, OXIDIZER 
Argon Hydrogen Oxygen 
Helium Methane 
Nitrogen 
Xenon 

Liquid Helium 
Liquid Nitrogen 

Notes: 
1. Oxygen and Fuel containers shall be separated by at least 20 feet. 
2. Flammable gases shall be separated from other fluids and between themselves by at least 20 feet. 
--------------------___________________I----------------------------------- 

As can be seen from this data we began our safety analysis by first identifying the fact that some of the 

proposed propellants which will be used at the Space Station are hazardous in nature within an earth 

environment. Micro-gravity and vacuum environment around the Space Station presents concerns 

that are different from the earth storage concerns. 

Blast fragments will travel at very high velocities making separation distances ineffective without blast 

fragment protection. Therefore, the separation distances for fluids at the Space Station will have to be 

based on spill containment, contamination, compatibility of fluids and the effectiveness of blast 

protection. 

The following are the recommended safety requirements to be used in method comparison/selection: 

a All fluids should be located TBD feet away from the habitable modules. 

b. All hazardous fluid tanks should be designed to minimize the cumulative explosion effects. 

c. Non-compatible fluids should not be stored together. 

The key results of the safety trade studies can be summarized by the following six (6) Safety Design 

Considerations for the development of an overall Fluid Management concept for the Space Station: 

1. Separate Fuels and Oxidizers 

2. Minimize Extra Vehicular Activity (EVA) 
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3. Design for expedient EVA if necessary (no protrusions, no sharp edges, etc.) 

4. Protect internaVexternal depot components from contamination 

5. Protect experiments from contamination 

6. Plan for spills/leaks (develop decontamination procedures for equipment and EVA suits). 

3.2 ALTERNATE EXPERIMENTAL FLUID PROVISIONING APPROACHES 

Figure 3-3 shows an "early concept" of a fluids carrier with removable bottles mounted to the Space 

Station. This approach, which separates different types of fluids into dedicated carriers, offers the 

advantage of providing separation between incompatible fluids, which may otherwise create a hazard, 

if both should leak in proximity to one another. The bottles could then be removed from the carrier 

and exchanged by EVA with the experiment bottles (which would be empty). Figure 3-4 shows an 

RMS removing a gas bottle or fluid tank and also shows a representation of the use of a flexible 

transfer line connecting the fluids storage facility and an experimental user. The fluid carriers could 

bring up filled bottles for exchange with empty fluid containers in either the carrier or on the 

experiment. The empty containers could be returned to Earth in the carrier, recharged, and used on 

future resupply missions. 

A variation of this approach would still changeout the experiment bottles, but rather than replacing the 

bottles with identical ORUs, the empty experiment bottles could be recharged from "bulk" size 

bottles/tanks within the carrier. 

Running a flexible line to the experiment would allow for easy resupply of a variety of experiments, but 

EVA with long lines would be difficult and contaminationkleaning of a "common" line would result in 

additional fluid use and operations, since the line would require venting down between resupply 

periods (unless individual lines were used to accommodate each different fluid). Experience with 

astronaut spacesuit umbilicals on Skylab indicates that EVA management of flexible lines becomes 

difficult beyond about 25 ft. Not only does the astronaut get tangled in the line, but the line can easily 

get tangled around the structure. Recharging the experiment bottles using a flexible line from the fluid 

carrier bottles/tanks to the individual experiments is not expedient from an operational standpoint. 

Bottle changeout does not require transfer lines. The disadvantage is that bottle transfer and 

changeout could require extensive EVA planning and more complicated design considerations for 

the experiments to allow for EVA access. 

Another method would use fixed (hard plumbed) fluid lines from the fluid carrier to each experiment, 
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but this approach is impractical during initial IOC experiments due to the infrequency of most of the 

resupply operations. In addition, installation of the plumbing system would be an enormous task both 

operationally and economically, and is somewhat "inflexible" to accommodate Space Statio n/truss 

growth. Also, this system would be more susceptible to fluid and thermal leaks. However, as use rates 

grow for a particular fluid, an integrated plumbing approach may be justifiable. These possibilities are 

discussed later for the individual experiments. The helium and nitrogen fluid approaches which are 

envisioned by NASA at this time are described in the following paragraphs, but hydrazine, xenon, 

argon, methane, and rare gases do not have a similar systems defined by NASA to date. 

3 3 1 SPFClFlC FI u ID CONCFR NSASSUFS 

Helium Provisioning 

Superfluid and liquid helium is desirable for use in satellite cooling systems because of its unique 

thermal properties. The unique physical properties and behavior of liquid helium (and superfluid 

helium) and the unique requirement for high flow rate, zero gravity transfer renders experience gained 

with other fluids inadequate. 

The preliminary conceptual design of an on-orbit helium replenishment approach has been 

conducted and is documented in the final report of the Superfluid Helium Tanker Study (SFHT) 

(NASA JSC) (see Reference 3-14) and the preliminary report of the Space Station Based Liquid 

Helium Servicing Facility (LHSF) (NASA -GSFC) (see Reference 3-15). These concepts are based on 

the in-situ fluid resupply philosophy. This approach offers more flexibility at a greater initial manpower 

cost (until processes can be automated). These concepts are based on a 10,000 liter spherical dewar 

(the reference showed that the spherical dewar design minimizes mass and life cycle costs). The fluid 

transfer system for this concept consists of a liquid acquisition device (LAD), a thermomechanical (TM) 

pump, SFHT plumbing, flexible transfer lines and user plumbing. 

Initial operations have been established for the SFHT. Delivery to Space Station will be accomplished 

via the STS (with an ELVIOMV as an alternative). The SFHT is equipped with an end effecter so that it 

can be attached to grapple fixtures at the Space Station, or so that a user can be attached to the 

SFHT. The grapple fixture and end effecter combination allows for a variety of basing methods. This 

design of the SFHT will require an EVA to connect and disconnect the electrical and fluid lines. Users 

will be transported to the Space Station via an OMV or the SFHT will have to be used onboard the 

Shuttle so that the supporting EVAs may be performed. Follow-on concepts will have automatic 

electrical and fluid connections which will allow for teleoperated helium replenishment. 
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The development of an on-orbit liquid helium storage and transfer capability is urgent because of the 

potential of several applications. In particular, the Particle Astrophysics Magnet Facility (ASTROMAG) 

(see Figure 3-l), under development at GSFC, and the Space Infrared Telescope Facility (SIRTF), 

under development at Ames. Of these two experiments, the SIRTF is the major driver because it 

requires greater quantities of liquid helium, although ASTROMAG may be deployed earlier. 

At the IOC SS, ASTROMAG will be attached, and delivered full of helium. Free-flyers which need 

helium must either be brought to the earth, the STS, or to the SS (if a helium storage facility exists) for 

replenishing. If growth results in large enough use rates of LHe, a LHe carrier could be attached to 

the SS truss near the CSF, and hard plumbed to a CSF fluid interface. It is imperative to minimize the 

length of fluid transfer lines which connect LHe supply and receiver tanks, to reduce the LHe required 

to prechill the lines prior to transfer operations. Long lines result in large thermal masses, and hence a 

great deal of sensible heat which must be removed, which is realized finally in the form of LHe 

boiloff/losses. 

Nitrogen 

An integrated nitrogen subsystem (INS) is baselined for the IOC SS, which will basically consist of a 

nitrogen "fluid bus" on the SS structure, designed to provide multiple users with nitrogen. 

3.2.2 FXPFRIMFNT FI LJlD PROVISIOWG APPROACH COMPARISON 'S, The results of a 

qualitative trade study is presented in this section, where the advantages and disadvantages of nine 

fluid provisioning approaches for each type of experiment from the stand point of crew/Space Station 

safety, and EVNIVA operations. These criteria are the two greatest factors in determination of a 

preferred approach. 

Tables 3-9 through 3-22 document the results of this trade study. The approach used for this trade 

was to develop a matrix of the different fluids used by each experiment and then identify advantages 

and disadvantages of the various provisioning approaches. 

3 - 1 7  



QRMWAL PAGE IS 
O f  POOR QUALITY 

Table 3-9. ASTROMAG Experiment Fluid Provisioning Approach Matrix 

I ... 
1. Equipment more suscaptible to spills/leaks. 

Mixture of fluids. 
3. Contamination of d w t  area from p u m .  

'4. Movement of bulky exwriment to depot area. 

__I- 

3 
..... 

4. Contaminatwn of Davbad. 

2. EVA wnneaingldiswnnnwing. 

- 
2 Locate LHe dewar ad wime 1. One servicina tank. 1. Sloshing. ... 

. ntarnnatwno pay a . 

3. Contarnnatlon of depot area. 
I 

1_1_1 

4-- p 
dewar,'shutlle' fluid req'd 

I I 

Table 3-9 is a summary of the trade done for the ASTROMAG experiment. With this experiment the 

most advantageous fluid management approach would be to have the experiment hard plumbed to a 

storage tank. This reduces EVA operations and thus reduces the risk to crew members. For the 

servicing of ASTROMAG, ORUs are not practical because of the large LHe replenishing requirements, 

and would result in frequent disti*rbances to ASTROMAG operation (proximity constraints require no 

movement of ferrous materials within three meters of ASTROMAG during operation). The 

replenishing of fluid should be coordinated with other ORU changeout, which would also help 

minimize disturbances to ASTROMAG experiments. As mentioned previously, LHe transfer line 

3 - 1 8  



lengths must be kept as short as possible, or eliminated where possible. 

Tables 3-10 through 3-13 summarize the results of the trades done for several other experiments 

which are attached to the SS; DXS, LAMAR, STO/SIG, and STO/PIG. With these experiments, the 

most advantageous fluid management approach for miscellaneous fluids would be to have the depot 

plumbed to each individual experiment. This reduces EVA operations, and thus reduces the risk to 

crew members. 

Table 3-1 0. DXS Experiment Fluid Provisioning Approach Matrix 

Argon and Mthane Gas ServidngIAnached lo Space St ation 1 
I 

~~ ~ 

Fluida b o t .  Demcription Advanlapea Disadvantages 

Mmc. Fluid4 1 Bonlechanpeoul 2. EVNIVA operations mre conplex. 
I 1. Smaller puantitiea of fluids. 1. More operations. 

~~ .... ~...~ ................. ~ ~~ 

____I- 
4. Movsmenlof bulky experiment 10 dew1 area. - 

I I 

2 Locale LHe W a r  al uime 
user(sl location 

3 Chang_at of small dewars 
at ex r i m 1  from d 

-__________I_____________________________ ...-- 
_I 
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Table 3-1 1. LAMAR Experiment Fluid Provisioning Approach Matrix 

I-- 

. I  
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' 0  

Table 3-1 2. STO/SIG Experiment Fluid Provisioning Approach Matrix 

uida ppt.1 Description I Advsntsgn 1 Disadvsntsgsa 
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Table 3-1 3. STO/PIG Experiment Fluid Provisioning Approach Matrix 

2 LocateLHedmv-I 
userpJ location 1 

I 
3 ChanqeOvl 01 small dewas I 

at ex rtment from d t . .  , 

Tables 3-1 4 through 3-22 contain comparisons for the unattached experiments. These experiments 

are not attached to the SS, therefore, the Options shown do not include "Depot Plumbed to 

Experiments". 

The best method of resupply appears to be based on moving the experiment to the SS, and refilling it 
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~0 i through a fluid interface panel, which is connected to a bulk supply of fluid in a fluid carrier located on 

the SS truss. 

Table 3-1 4. STO/SS Experiment Fluid Provisioning Approach Matrix 

. I 
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Table 3-15. AXAF Experiment Fluid Provisioning Approach Matrix 

i 

5 Flexible line Imm depot 

I 

,tie& LHel 1 --1 . Transporl 01 large quantities. 
-p 2. Sbshin . __- 

_______I 

4 Use small (I B 2,000 hr) 1. Oneservmnptank. 1 Sbshinq. 
dewar ‘shuttle’ fluid r ‘d 2. Conneain dismnneciin . 

3. Contamnatan 01 de001 area 

r 1 1  I I I 
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Table 3-1 6. GRO Experiment Fluid Provisioning Approach Matrix 

n of dwot area lrom purging. 
I I  I 14. Movement of bulky exprimen1 to depot area. 

I I  .. 1. Sbshing. 

--- 4. Sn ints. 

2. EVA a ) n n e Q i n 9 / d g a M n n e d l n g  
. ontarrinatmo 

5 Flexible line lrom depot 1. No transport d fluids in tanks. 1. Equipment more susceptible to spilWleaks. 
1__1- 

I 

I 1  I 14. Entanalemnt 01 lines with slructure. 

I I I  1 I I 
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Table 3-1 7. LDR Experiment Fluid Provisioning Approach Matrix 

I I t I I  

1- ]at experiment from depot E. Some robotic activity. 
I 3  lCM n E t  of small dewan 11. Smalle-tity. I1 Servicing in vicinity 01 other tanks (venti 

12 Contarnnatlon of depot area. 

- 
4 Use small (I e 2- 1 One sewiang tank. 1. Slosh- _II 

-_I * 
3. Contarnnatan 01 depot area. 

I. 

-- 
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Table 3-1 8. SBAR Experiment Fluid Provisioning Approach Matrix 

1 
uidm pp1.1 Dareription I Advrntrgee I Dierdvmntmger 

Irdilled, and replaced) I 3. Movement of bulky exwriment to depot area. 
I I 
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Table 3-19. SIRTF Experiment Fluid Provisioning Approach Matrix 

Fluids b p t .  

Misc. Fluid: I 

P 7 

Descrlptlon Advintage. Diasdvanlagcs 

N/A Bonlechaneut 
w/lndiv. ex 'mts 

c 

Flulds manifolded ----- 

----- ".. 
4 Move bonle to user. relill 

user rtn ne to t 

I,, 0 

I I I  I I I 
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Table 3-20. 3s Experiment Fluid Provisioning Approach Matrix 

____.- 

I 

user. nn. bonlo to depot 
I 4 Move bonk to user. refill 1. One servicing tank. 1. Skshing. " 

I 

Iransporl 01 fluids in tanks. 
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Table 3-21. STO/POP Fluid Provisioning Approach Matrix 

I I 

I 2 E u i d s  manifolded 11. Single point of wnnect/diJconned. 11. Equipment m r e b l e  lo spiltslleak 

I 4 Entanalement of lines with structure 
-He 6 LHelf 1 Move dewar lo user, x-fer - N/A -- 

I 4 I U s e ~ 2 , O O O  Itr) 1 I 
I dewar,'shuttle' fluid req'd I 

I I 

Note: It is highly unlikely that the Polar Orbiting Platform will be serviced from the SS, but the Table 

was included for completeness, since the experiment is listed with the SS experiments. 
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Table 3-22. XGP Experiment Fluid Provisioning Approach Matrix 

ercr@tMbcation: Hydrazine Servicing/Not Anached to Spam Station 

uida P D t . 1  DeSCrlDtiOn I Advantages I Disadvantaacs 

.________________- -- 3. Contamination 01 d area from ur in . 
,4. ... ovement 0. bunny experiment lo depot area. 

I__ 

epa plumbed to ew'mo I 

Use small (Le 2.000 Itr) 

I I 

For the free-flying experiments, it appears the best way to provide hydrazine servicing is to use a fluid 

interface at the SS, to which a bulk supply of the fluid is attached. If a CSF exists at the growth SS, 

then the hydrazine fluid interface could be located nearby, and refill the free-flying experiments 

following other servicing at the CSF. This would keep hydrazine out of the CSF, and reduce the risk of 

toxic contamination somewhat. 
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The nitrogen needed for SBAR and 3s  could be provided by the INS by the refilling of the empty 0 
nitrogen ORUs when the experiment is docked for "other servicing". 

3.2.3 FXPFRIMFNTAI FLUID CARRIFR CONCFPTS. The transport and storage of approximately 

470,000 liters (150,000 kg) of R & D fluids (Space Station Users) is required to meet growth model 

requirements from 1994 through the year 2010. The fluid requirements are shown in Table 3-23. 

The carrier design concepts presented in this section (Section 3.2) are representative of the type of 

tankage which could satisfy the required range of fluid types/quantities, for a scenario which requires 

the bulk delivery and storage of fluids (which all of the considered options require in growth 

configurations). 

Preliminary fluid carrier concepts were defined based on liquid and gas containment pressures 

between 20 and 3000 psia. The basic fluid carrier shown in Figure 3-5 was designed to fit within an 

envelope of 16 feet in length by 14.5 feet in diameter, and be delivered by the STS to the SS. 

Preliminary analysis indicated a total launch requirement of 34 fluid carriers through the year 2010, at a 

rate of 1 to 4 carriers per year for proper time phasing. Approximately 70% of the total fluids carrier 

volume will be dedicated to liquid helium transport. A liquid helium container volume of 10,000 liters 

was originally assumed, in conjunction with a quantity of 23 "miscellaneous" (all other fluids needed 

for US and international R & D) fluid carriers. 

The concept shown in Figure 3-5 is of limited practical value and versatility because it is a 

"double-wide" type of unpressurized cargo container. It is the length of an unpressurized cargo 

container (sixteen feet) as defined in Reference 2-2 rather than the eight foot length of a fluids carrier. 

Hence the term "double-wide". 

A more modular conceptual design, such as the Miscellaneous Fluids Carrier shown in Figure 3-6 

enables the delivered fluid quantity to be more closely tailored to the requirements. This led to the 

idea of having a separate container for liquid helium only. Since the volume of the liquid helium 

required is significantly greater than the rest of the fluids combined, a dedicated helium carrier 

concept was defined. This configuration is shown in Figure 3-7. 

This drawing concept shows the STS trunion attachments and the diameter of the carrier which was 

selected to be compatible with the STS Orbiter Payload bay. The primary structural support 
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Figure 3-5CAD Concept of a Fluids Carrier for STS Delivery to the Space Station 
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Figure 3-6. Miscellaneous Fluids Carrier 
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Figure 3-6. Miscellaneous Fluids Carrier (continued) 
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Figure 3-7. Dedicated Liquid Helium Carrier 
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Figure 3-7. Dedicated Liquid Helium Carrier (continued) 
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constructed of 6061 aluminum alloy and consists of radial ring frames, longitudinal stringers and a skin. 

The rectangular panel shown at the base contains the three point orbital platform attachment 

developed for the Long Term Cryogenic Storage Facility (LTCSF), fill, drain and vent valves as 

required, TV camera target for remote manipulation, alignment pins, electrical interfaces and any other 

required devices. Although the tanks would be mounted most likely with low thermally conductive 

struts, electrical continuity would have to be maintained at the same level throughout the structure 

and tanks. 

A dedicated hydrazine carrier consisting of three tanks with a volume of 2,000 liters each, was 

configured as shown in Figure 3-8. It is expedient from both safety and operational viewpoints to 

maintain a separate hydrazine carrier. The tanks could be supported within the carrier in a number of 

ways; struts attached to fittings on the tanks allowing for differential thermal expansion and contraction 

and/or pressure changes, partial foam encapsulation, or perhaps latches to permit remote manipulator 

arm insertion and removal of the tanks. Section 4 includes a drawing of the carriers with the IOC and 
growth SSs, and includes a "representative" tank support method. 

Nitrogen, Argon, Methane, Xenon and "rare" gas fluid requirements are satisfied by the Miscellaneous 

Fluids Carrier. This carrier consists of two liquid nitrogen spherical containers each with a capacity of 

3,000 liters, and eight high pressure gas containers, each with a capacity of 400 liters. These gases 

include This carrier design is shown in Figure 3-6. 

The requirements for the gases (other than the nitrogen liquid) are so low that three foot diameter 

containers were selected for commonality and ease of handling and storage, and delivered volume of 

each is more than sufficient to provide the necessary fluids on orbit during a particular time period. 

3.3 CRYOGENIC PROPELLANT PROVISIONING 

The cryogenic LH2/L02 propellant storage systems developed under NASA-MSFC's "Long Term 

Cryogenic Storage Facility System Study" (Reference 1-2, -3, -4, and -5) were used as baseline 

L02/LH2 propellant storage concepts for this study, and were designed to the groundrules defined 

by NASA-MSFC. 

Appropriate combinations of the LTCSFSS propellant storage tanksets allowed for several co-orbiting 

platform concepts to be designed, each tailored to a particular Code Z mission model, as well a 

concept for the STV mission model. 
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Figure 3-8. Dedicated Hydrazine Fluid Carrier 
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Figure 3-8. Dedicated Hydrazine Fluid Carrier (continued) 
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In addition, detailed thermodynamic processes which effect LTCSFSS tankset performance were 

analyzed with GDSS depot design computer codes to support the transfer operation 

definitionsltimelines reported in Section 4. 

3.3.1 PROPFl I ANT TANKS ON CO-ORRITING PI ATFORMS. A family of tankset types, sizes, and 

accompanying platforms were designed during 1988 under the LTCSFSS contract to meet a variety 

of launch vehicles, mission model propellant needs, and delivery scenarios. The development of 

these concepts and corresponding results are detailed in Reference 1-3. Figures 3-9 through 3-14 
contain refueling platform concepts to support the cryogenic (and also a limited quantity of Argon and 

Hydrazine) propellant requirements defined in Section 2 for STV and Code 2 Mission Models. The 

sizelfluid capacity of each concept is based on fluid requirements (with a design margin of safety) for 

the particular mission model. S N  concepts -a and -b illustrate platform flexibility. 

3.3.2 PROPFI U T  TANKS ATTACHFO TO SPACF STATION . Propellant provisioning for the 

STV (and possibly the Lunar missions) by LH2/L02 storage at the SS was considered. The STV 

mission model provided the propellant requirements for this concept, as well as LTCSFSS tanksets. 

Both microgravity and reboost settling liquid acquisition methods were considered to assess their 

impact on Space Station and transfer operations. 

3.3.3 ] PFRFORMANCF . Regardless of 

LTCSFSS type tankage location, it is important to quantify the thermal performance; both the 

steady-state boiloff performance during quiescent storage periods, as well as pressurant required and 

pressureAemperature histories in user tanks during transfer of fluids. The fluid transfer and storage 

performance for liquid hydrogen and liquid oxygen tanksets were investigated. Two depot sizes 

were considered, 100,000 Ibm and 200,000 Ibm. Both tank sets are wet-launched with an 

oxygen-to-hydrogen mass ratio of 6:l. The propellant tanks are cylindrical with elliptical end caps. 

The Tank Geometry module of the COOLANT program (Reference 1-5) was used to determine the 

relevant sizes and masses for these tank sets, which are summarized in Table 3-24. 
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Table 3-24. Geometry and Analytical Parametric Data for COOLANT Program 

Tank Set 1 OOklb 200klb 

Fluid Hydrogen Oxygen Hydrogen Oxygen 

Diameter (in) 154 154 200 

Elliptical End Cap Radius Ratio 1.379 1.379 1.379 

Tank Wall Area (ft2) 1256 567.3 1959 

Cylinder Length (in) 247 42.16 284.5 

Tank Volume (ft3) 3465 1257 6930 

Supported Mass (Ibm) 21,484 90,009 403 45 
Thermal Mass (Ibm) 5141 3201 7614 

----1----____--1----__II____LII_________------------------------- 

200 
41.6 
1.379 
2514 
899.5 
178,305 
5353 

.-----_-------------- 

Propellant Boil Off Rates 

The System Performance module of the COOLANT program was used to investigate the steady state 

boil off rates for these two tank sets. The boil off rate is strongly dependent on the tank insulation and 

VCS (Vapor Cooled Shield) configuration. Four one-inch thick MLI (Multilayer Insulation) blankets 

were used on each tank. The hydrogen tanks used a two-pass, parallel flow VCS, with the inner and 

outer shields located at 30 and 66 percent of the distance from the tank wall to the outer MLI layer. 

The oxygen tanks used a single pass hydrogen shield located at 74 percent of the distance from the 

tank wall to the outer MLI layer. The boil off rates are also dependent on the source temperature. The 

environment associated with various source temperatures are given in Table 3-25. 

The steady state boil off rates for a range of source temperatures between 300 and 490 R are shown 

in Figure 3-15. The boil off rates for the 200klb tank set are higher than the lOOklb tank set, by a factor 

of -1.6 for hydrogen and -1.8 for oxygen. This is due to the larger surface areas exposed to space 

for the larger tankset size. However, when normalized by the tank capacity, the boil off rates for the 

200klb tank set are lower than the 100klb tank set by -20 percent for hydrogen and -10 percent for 
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oxygen, as shown in Figure 3-16 (the ratio of surface area to stored volume is lower for the larger 0 
tankset size). The combined hydrogen and oxygen boil off rates, normalized by the total tank set 

capacity, are shown in Figure 3-17. The normalized combined boil off rate for the 200klb tank set is 

-10 percent lower than the 100klb tank set. In the LEO environment (457 R), the combined boil off 

rate is 0.24% per month for the 200klb tank set and 0.26% per month for the 100klb tank set. To 

calculate the steady state boil off rates the tank pressure was assumed constant at 22 psia. The TVS 

(Thermodynamic Vent System) minimum operating pressure was 7 psia. 
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Figure 3-15. Steady-state Boiloff in Ibm/hr for a Range of Source Temperatures. 
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Figure 3-1 6. Steady-state Boiloff Normalized by Tank Capacity. 
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Figure 3-1 7. Combined Steady-State Boiloff. 

Typically the tanks will be sealed and the pressure will rise to a set maximum, at which time the TVS 

vent valve will be opened to lower the tank pressure back to a preset minimum, completing the cycle. 

For a typical system, the TVS valve opens when the tank pressure reaches 20.5 psia, and turns off 

when the tank pressure falls to 19.5 psia. The TVS flow rate, when operating, may be substantially 

higher than the steady state value. To accommodate this larger mass flow rate, and also provide the 

capability of conditioning of stored propellants from a given storage pressure to a lower storage 

pressure (defined by systemhser pressure requirements), the TVS must be oversized substantially. 

For example, assuming a source temperature of 457 R, the cycle time is 826 hrs for the lOOklb 

hydrogen tank and 1037 hrs for the 200 klb.hydrogen tank, which requires that the TVS operate 

about 22 percent of the time for both the 100 and 200 klb. tank sizes. The boiloff rates associated 

with these duty cycles are 2.2 times higher than the corresponding steady state boil off rates 

presented earlier. 
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A passive TVS is used to maintain the tank pressure within acceptable limits. The TVS is assumed to 

be wall-mounted to take advantage of the tank wall as an extended heat transfer surface. The GDSS 

WALLTVS program was used to calculate the tube length necessary to completely vaporize the fluid 

in the line and the total pressure drop through the line, the results of which are shown in Table 3-26. 

Table 3-26. TVS Sizing Analyses Results 

Steady State Boil Off: 

Tank Length (ft) 

1 OOklb - H2 24 

200klb - H2 30 

100klb - 0 2  31 

200klb - 0 2  38 

Pressure Drop (psi) 

0.0005 

0.001 1 

0.0047 

0.01 1 

Oversized TVS (required for practical system design): 

lOOklb - H2 75 

200klb - H2 103 

100klb - 0 2  72 

200klb - 0 2  97 

0.079 

0.22 

0.44 

1.5 

Note: The TVS is assumed to be wall-mounted 

For all the above cases a source temperature of 457 R and a gravity level of 32.2 x 10-5 fVsec2 was 

assumed. Longer TVS tubes are necessary for the oversized cases because the TVS flow rates are 

higher due to the intermittent operation and extended capability. 

Pressurant Requirements 

Liquid hydrogen will be transferred by pressurizing the tank with hydrogen vapor to provide the 
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required NPSP (net positive suction pressure) for the transfer pump(s). The mass of pressurant 

required is dependent on a number of parameters, including the mass of liquid transferred, initial tank 

pressure, transfer pressure, tank volume, pressurant temperature, and the initial amount of ullage in 

the tank. GDSS's PRSTHRM program was used to analyze the pressurant requirements for transfers 

of liquid hydrogen. A representative transfer will be to an STV with a total propellant capacity of 

52,500 Ibm. Assuming a 6:l oxygen-to-hydrogen mass ratio, a total of 7500 Ibm of liquid hydrogen 

will be transferred. The initial tank pressure and transfer pressure considered were 20 and 25 psia, 

respectively. 

Figures 3-18 and 3-19 show the mass of pressurant required to complete a transfer for a range of initial 

ullage fractions. These figures include results for both the 100klb and 200klb hydrogen tanks at two 

pressurant temperatures, 45 and 70 R. Note that 45 R is only five degrees higher than the saturation 

temperature at the transfer pressure of 25 psia. To predict the mass of pressurant necessary to 

complete a transfer, the collapse factor must be known (the collapse factor effects the rate at which 

the injected pressurant gas exchanges heat with and condenses into the supply tank saturated 

liquid). The "worst case" would be a total collapse of the pressurant vapor which would require the 

most pressurant mass to complete the transfer. This case does not depend on the temperature of the 

pressurant. The "best case" would be if no pressurant collapsed, and would require the least amount 

of pressurant to complete the transfer. The actual case lies between these two extremes and was 

predicted using the Moore correlation. The mass of pressurant required increases as the ullage 

fraction increases. However, the most dramatic increase is associated with a decrease in the 

pressurant temperature. 

Prechill 

A tank must be prechilled to a "target temperature" to allow it to be filled without venting. The prechill 

consists of a number of charge, hold, and vent cycles with cold liquid, which removes sensible heat 

from the tank walkold mass. The GDNVF program was used to predict the amount of liquid hydrogen 

necessary to prechill the lOOklb hydrogen and 200klb hydrogen tanks from an initial temperature of 

457 R to a temperature of 100 R. The mass injected during each charge cycle was defined by the 

amount necessary to cause the tank pressure to rise to about 40 psia, if allowed to come to 

equilibrium. The liquid "charge" was held until the rate of decrease in the tank wall temperature was 

less than a prescribed value (the rate of change asymptotically approaches zero with time). This value 

was varied to allow the prechill to occur in less than eight hours. The charge cycle was followed by a 

vent to an intermediate tank pressure which maximized the amount of energy the ullage could receive 

from the tank wall. The remaining charge was again held until the rate of decrease in the tank wall 
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temperature was less than the prescribed value, at which time the tank was fully vented and 

recharged. The injected liquid hydrogen was supplied at 36.6 R. 

300 

250 

200 

150 

100 
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Moore Corr, T = 45 R 
No Collapse, T = 45 R 
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No Collapse, T = 70 R 

Initial Ullage (% tank volume) 

Figure 3-18. Required Pressurant, 7500 Ibm Transfer of LH2 from a 100 klb. Tank Set 
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Figure 3-19. Required Pressurant, 7500 Ibm Transfer of LH2 from a 200 klb. Tank Set 

Profiles of the tank pressure, wall temperature, and mass supplied are shown in Figures 3-20 through 

3-22 for the 100klb hydrogen tank and in Figures 3-23 through 3-25 for the 200klb hydrogen tank. 

To chill the 100klb hydrogen tank down to 100 R in 7.9 hours required 553 Ibm of liquid hydrogen. 

The 200klb hydrogen tank required 842 Ibm of liquid hydrogen to prechill in 7.3 hours. The profile of 

the tank wall temperature indicates that little additional cooling would be obtained from more than two 

vents for each charge. 

It is possible to prechill the tanks more rapidly than the times indicated, but this will result in a larger 

total injected mass requirement, due to the fact that insufficient time is allowed for the injected fluid to 

absorb sensible heat from the tank wall/cold mass. 

Several prechill cases for the LO2 tank were analyzed. Initially, the chilldown was done in a manner 

similar to that used for LH2. A charge, hold, vent process was used, and results indicate that the 
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Figure 3-20. Tank Pressure History During Prechill of a 100 Klb. LH2 Tank Set 
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Figure 3-21. Tank Wall Temperature History During Prechill of a 100 Klb. LH2 Tank Set 
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Figure 3-22. Profile of Mass used During Prechill of a 100 Klb. LH2 Tank Set 
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Figure 3-24. Tank Wall Temperature History During Prechill of a 200 Klb. LH2 Tank Set 
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prechill took nearly 10 hours to reduce the tankwall/ullage temperature from 460R to 230R. The 

sensible and latent heat capabilities of LO2 are so low compared to LH2 however, that the "hold" 

portion of the process results in very little reduction in tank walVullage temperature, and hence the 

hold period is a very inefficient use of time. The reduction in wall/ullage temperature occurs only 

during the brief time period immediately following the charge (injection of saturation liquid oxygen) 

process. Eliminating most of the hold process resulted in a prechill time of 39 minutes, requiring a total 

injected mass of 2937 Ib of L02. Allowing the hold process in an attempt to decrease the total 

injected mass requirement resulted in a prechill time of 9.2 hours, and a total injected mass of 2692 Ib. 

Therefore, it is recommended that a charge, minimal hold, vent procedure be used for LO2 tank 

prechill, since only a modest 8 Yo of injected LO2 can be saved, while increasing the prechill time from 

39 minutes to 9.2 hours. 

Once prechilled, the evacuated tanks are locked-up and filled without any additional venting. A 

steady liquid flow rate was chosen so as to fill the tank in about four hours. The hydrogen tanks were 

filled to the 95% volume level, from an initial temperature of 100 R using liquid hydrogen supplied at 

36.6 R. The oxygen tanks were filled to 97%, from an initial temperature of 200 R using liquid oxygen 

supplied at 167 R. Profiles of the tank pressure, wall temperature, and liquid temperature for the 

100klb hydrogen tank are shown in Figures 3-26 through 3-28. Corresponding figures for the 

200klb hydrogen tank, lOOklb oxygen tank, and 200klb oxygen tank are shown in Figures 3-29 

through 3-37. The final tank pressure is -15 psia for the hydrogen cases and is dependent on the 

initial tank temperature, which was 100 R for the cases shown. The initial pressure rise for the oxygen 

cases is more rapid than for the hydrogen cases. This difference is due to the lower latent heat of 

oxygen and the greater specific heat of the aluminum tank wall at liquid oxygen temperatures. The 
final tank pressure for the oxygen cases is -20 psia, and is dependent on the initial tank temperature, 

which was 200 R. The model used in the GDNVF program to predict the final stages of the oxygen fill 

is currently being tested and improved. 

3.4 FLUID MANAGEMENT OPTIONS SUMMARY 

3.4.1 NON-CRYOGFNIC, In providing the SS attached experiments with required fluids, there are 

advantages and disadvantages for all approaches, and options range from ORU replacement to hard 

fluid connections between bulk fluid carriers and each experimenthser attached to the SS. 

For experiments which are not attached to (but will receive fluid servicing from) the SS, hard lines are 
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Figure 3-26. Tank Pressure History During Fill of Prechilled 100 Klb. LH2 Tank Set 
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Figure 3-27. Tank Wall Temperature History During Fill of Prechilled 100Klb. LH2 Tank Set 
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Figure 3-28. Liquid Temperature History During Fill of Prechilled 100Klb. LH2 Tank Set 
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Figure 3-29. Tank Pressure History During Fill of Prechilled 200 Klb. LH2 Tank Set 
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Figure 3-31. Liquid Temperature History During Fill of Prechilled 200Klb. LH2 Tank Set 
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Figure 3-33. Tank Wall Temperature History During Fill of Prechilled 100Klb. LO2 Tank Set 
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3 - 7 2  



200 

190 
CI 

E. 
9) 
L 

c 
a 
m 
f 

P 180 

- - 
z 

170 

160 
u.0 1 .o 2.0 3.0 4.0 

Time (hr) 

Figure 3-36. Tank Wall Temperature History During Fill of Prechilled 200Klb. LO2 Tank Set 

3 - 7 3  



u.0 1 .o 2.0 3.0 4.0 

Time (hr) 

Figure 3-37. Liquid Temperature History During Fill of Prechilled 200Klb. LO2 Tank Set 

3 - 7 4  



obviously unacceptable. If fluid provisioning from the SS is assumed, each experiment must be 

moved to the SS rather than transporting a fluid delivery tanker (which either contains the only fluid 

required for that particular user, or "drags" along a large amount of other fluids package with the 

required fluid on the fluid carrier, resulting in inefficiencies) to each user. This also may be 

advantageous if other servicing must be performed on the experiment at the Customer Servicing 

Facility (CSF) or other servicing point. 

3.4.2 CRYOGFNIC. In the case of LHe servicing for attached payloadslexperiments, ORUs are not 

practical due to serious Performance deficiencies (large fluid waste penalty) associated with the 

storage of LHe in typically small ORU vessels. Co-location of LHe users near a centrally located LHe 

carrier was considered, as well as simply replenishing the individual experiments with a STS or 

expendable launched tanker. 

The ASTROMAG experiment is a major user of LHe. A dedicated storage dewar system concept (to 

resupply the experiment via STS or expendable-launched tanker) is already planned by NASA-GSFC 

under the Liquid Helium Storage Facility (LHSF) program. A facility such as this could be incorporated 

into a LHe carrier concept similar to the one shown in Figure 3-7, and thus be used to provide AXAF, 

LDR, and SIRTF LHe needs as well. The design features and operations required for LHe 

management are rather complex (and critical for LHe Il), and overall operations and performance could 

be improved by co-location of LHe facilities/users. The unattached LHe experiments could be docked 

near the LHe carrier (which should be adjacent to the ASTROMAG and all other attached to SS users 

of LHe), connected to it by hard (or at least thermally guarded) transfer lines using "quick disconnect" 

fluid lines and other required support equipment, and refilled. 

The provisioning of propellant for cryogenic vehicles will be required for S N ,  Planetary Initiatives, and 

Code Z missions. Due to the large LH2 and LO2 (and some Argon, Hydrazine) quantities involved, 

unmanned co-orbiting refueling platforms have been conceptually designed, which are based on 

LTCSF storage tankset technology. STV and Code Z propellant storage platforms are presented, 

which are sized for each particular mission model. 

Predictions of LH2 and LO2 tankset performance using the GDSS computer code COOLANT have 

been presented. The results indicate that a 1 OOklb capacity tankset LH2 tank can be prechilled (8 

hours, 460R to 100R) and filled (4 hours) in less than 12 hours total. Because of the fluid properties of 

L02, prechilling must be done from 460R to only 250R, but still requires about 8 hours because of 

the lower sensible and latent heat of L02. Filling of the 0 2  tank may also be accomplished within 4 
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hours. These estimates provided a basis for an operations timeline, presented in Section 4 of this 

report. 

The steady-state boiloff rates for LHZL02 for the 100 and 200klb tanksets have been reported for a 

range of environments, and are all less than 0.4% per month by weight. 

Required ullage pressurant quantities for transfer of 7500 Ib of LH2 from a storage tankset into a user 

tank (i.e. STV vehicle) have been estimated. The effects of initial supply tank fluid levels, collapse 

factor, and pressurant gas inlet temperature have been reported also. The total pressurant required 

and in general the entire transfer process, is very sensitive to these variables. 
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4 
FLUID PROVISIONING APPROACH SELECTION 

The trade studies and comparisons of the alternate experimental and propellant fluid provisioning 

approaches reported in Section 3 support the rationale and "baseline" approach presented in this 

section. Defining an optimal experimental fluid management strategy is difficult because many issues 

concerning the experimental payload replenishment have yet to be resolved. However, a 

recommended strategy for supporting IOC through growth SS attached experimental fluid 

requirements has been defined. While these recommendations are preliminary in nature, they do 

provide a consistent approach to providing all fluid requirements to NASA's currently planned Space 

Station objectives between 1994 and 2018 (and beyond) via an "evolvable architecture". 

4.1 EXPERIMENTAL FLUID PROVISIONING APPROACH SELECTION 

The transport and storage of over 250,000 liters (62,000 kg) of fluids is required to meet US and 

international experimental payload fluid requirements from 1994 through the year 201 1. These fluids 

must be brought from earth, and for this study have been assumed to be delivered by fluid carriers 

similar to those presented in Section 3. Requirements analyses indicate a total launch requirement of 

a total of 30 fluid carriers through the year 201 1, at a rate of 1 to 4 carriers per year. For this study, is 

assumed that the Station will support the resupply and maintenance of free flying experiments. 

Since initially most of the experimental fluid requirements are quite low, it is recommended that fluids 

should be provided for by the removal and replacement of ORUs by EVA, in a manner similar to that 

used to replace film, batteries, etc. with ORUs for the various experiments. As fluid needs increase, 

there may be an economic incentive to adopt an integrated fluid subsystem approach, which would 

use hard lines on the SS truss to connect experiments to a central fluid storage tank. Such a system is 

planned for the IOC SS for nitrogen, called the INS (Integrated Nitrogen System). The economic 

"break points" for the incorporation of such a system is determined by use rates, commonality, and life 

cycle costs (capital and operating standpoints). 

If a Customer Servicing Facility (CSF) is going to be used to service free flyers, the attached payloads 

could be serviced there also. Certain fluid carriers could then be placed near the CSF which would 

minimize transfer line lengths or MRMS travel distance/operations requirements. Standardized fluid 

interfaces and automatic coupling devices could be used for fluid transfer within the CSF. It is likely 
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that a experimental payload fluid resupply strategy will evolve to the point where a combination of 

approaches are used. 

Assembly layouts of the IOC and growth Space Stations are shown in Figures 4-1 and 4-2. The 

drawings include locations fro the attached experiments on both the IOC and growth stations, and the 

necessary fluid carriers, interfaces, and structural implications of the IOC to growth evolution (Le. 

experiment relocation, viewing considerations, additional truss elements, etc.). 

4.1.1 NITROGFN. The IOC Space Station will have an Integrated Nitrogen System (INS) that will 

supply nitrogen to the lab modules, the ECLSS, and to other locations at the SS (Le. airlocks, etc.). 

Figure 3-3 shows a schematic of the proposed INS. 

The INS will have a fluid interface to allow connection with the "on-orbit storage tank" (which does not 

have a specified capacity/design configuration at this time), which is essentially a surge 

volume/storage container for the resident N2. A similar interface could be used to allow transfer of N2 

from a N2 fluid carrier to increase the capacity of the INS. This approach allows growth of the INS to 

support growth users which are not present on the IOC SS. Attached experiments could be supplied 

via hard lines of the INS, and free-flyers could be refilled telerobotically at a fluid interface 

paneVdocking adaptor. The INS system is described in Reference 4-1. 

ORU replacement would support the IOC SS experiment requirements, and as users/rates increase, 

this approach could evolve into the direct connection of experiments requiring nitrogen with the INS 

(Integrated Nitrogen System). Depending on the rate at which the user requirements grow, N2 

carriers could be delivered to the SS to interface with the INS, to supplement its' N2 storage capacity 

to meet the new requirements. 

The recommended approach will consist of a N2 carrier mounted near the common and habitation 

modules on the main boom, and will interface with the INS. Nitrogen use rates will grow rapidly as OMV 

and /or ACEM cold N2 gas thruster rates increase for movement of propellant storage tank sets in the 

vicinity of the SS. 

4.1.2 MFTHANF ARGON. XFNON. AND "RARF GAS". ORU replacement would support the IOC SS 

experiment requirements for these fluids, and as userdrates increase, this approach could evolve 

into; 1) the use of a dedicated carrier containing bulk supplies of gases used to recharge the ORU gas 

containers (rather than returning the empty ORUs to earth), and eventually 2) the construction of 

4 - 2  



, (-1 11 I 

c 

LA 

L 
I, 

c! 1 

. i t  

i 1  

iJ  
i 

,;I i 
1 

1 

75 
J 

! 

1 

J 

/ / ' /  
I 

Lu I 

/ I 



I- - 

x 
c\ 

i 

r 

' 1  
\ i 

I I !  
I 
L - . !  

t 

d 
0 

' I  



I .. 

- - - - *  
+ r n  
U 

U 

C 
0 
m 
.- - 
m 
a 
0 m 
Q 
v) 

a 
I3 rn 
L 

ii 

4 - 6  



4.2.1 PROPFI I ANT TANKS ATTACHFD TO SPACF STATION, Since the charter of this study is to 

identify the impacts of fluid delivery, storage, and transfer at the SS, STV mission model propellant 

provisioning from the SS was considered. It has also been suggested that a Lunar mission could be 

supported by SS propellant, but the STV mission model was used for the operations analysis that 

f 0 I lows. 

It is noteworthy that two, fully loaded 200klb capacity tanksets (which provides sufficient capacity for 

the STV mission model, as defined by a "modified Revision 8 "STV mission model) weigh nearly 

520klb including structure. This weight is on the same order as the IOC SS Freedom, which is 

estimated to be approximately 500klb. Storage of Mars, Lunar and other Code Z propellant at the SS 

is considered by NASA to be impractical, the modified STV mission model was selected to provide 

fluid requirements for SS propellant storage. 

The scenario investigated a Station based STV which has all the maintenance, integration and 

refueling capabilities. Delivery of the propellant to the Station was analyzed, using the LTCSF 

tanksets due to the design data available on them. The tanks would be carried up on the Shuttle Z 

vehicle which initially had a payload to Station altitude capability of 193,700 Ibs. but was resized to a 

capacity of 308,000 Ibs. The payload fairing is 40 feet in diameter by 50 feet long. Using only currently 

defined LTCSF tank configurations, resupply analyses were performed with the 140klb capacity 

version initially and later with the 200klb capacity. These tanksets have a total wet (fully fueled) weight 

of 177klb and 245.5k Ibs, respectively. These scenarios require that the OMV rendezvous with the 

tankset and ferry it to the Station. However, the OMV has been designed for a maximum payload 

weight of 75k Ibs., assuming no maneuvering requirements. Bringing the tank to the Station requires 

positive attitude control throughout the transfer and the use of cold gas during the final approach for 

contamination reduction. 

In order to increase the OMVs capability with minimum development costs, we have developed an 

Attitude Control Enhancement Module (ACEM) design concept as shown in Figure 4-4. The ACEM is 

attached to the front of (and controlled by) the OMV. To minimize the impact to the OMV, the ACEM 

will have its own batteries, signal processor and thruster control hardware and software, but it will rely 

on the OMV for guidance, navigation and control information. The OMV will relay the commands sent 

from the ground or Station to the ACEM. 

The ACEM will have two deployable S-Band omnidirectional antennas capable of extending beyond 
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0 the diameter of the tanks to allow the OMV to communicate continuously with TDRSS and (or) the 

Space Station. Two thruster pods, each containing five 110 Ib. thrust nitrogen thrusters, will also 

extend beyond the tank diameter. This will provide three axis control for the tank with sufficient force 

to allow yawing the tank 180" in about three minutes. The ACEM will carry a total of 1000 Ibs. of 

nitrogen in eight 2.5 ft. tanks. These tanks will be refilled at the Station. 

The scenario for delivery of the tankset to the Station is depicted in Figures 4-5 and 4-6. Figure 4-5 

shows the delivery of the tank to the Station rendezvous zone by the Shuttle-Z third stage. The 

OMV/ACEM assembly travels from the Station, rendezvous and docks with the LTCSF tankset, and 

stabilizes it. The OMV performs a burn with its main thrusters for about 20 minutes to initiate the 

phasing to bring the tank to the Station. Prior to arriving at the proximity zone, the tank is oriented and 

a burn is performed to co-orbit the tank with the Station. The ACEM cold gas thrusters perform the 

maneuvers to bring the tank within reach of the MRMS. Figure 4-6 shows the delivery operations 

inside the proximity operations zone. 

Figure 4-7 shows the refueling scenario for the S N  at the SS. A detailed operational timeline of the 

tank delivery process along with the STV operations at the Station is shown in Table 4-1. The Table 

includes times for both reboost and microgravity propellant acquisition systems. Microgravity methods 

require capillary devices for propellant acquisition, and the reboost alternative provides. propellant 

settling induces by acceleration of the SS. The delivery operations and times will be the same for the 

140klb and 200klb tanksets. 

0 

Two methods of propellant transfer from the Station to the STV were investigated. One is microgravity 

transfer and the other is settled transfer during reboost. If strictly microgravity, a capillary liquid 

acquisition device is preferred and it requires the tanks and STV to contain liquid acquisition devices 

(LADS) and and other special design features. It is uncertain, however, how the LAD will behave 

under the accelerations the Station will experience during reboost. It is possible for the LAD to dry out 

in localized regions, thereby decreasing or hindering its performance. 

The propellant settling that occurs during reboost may be used to allow settled STV tanking 

operations to occur during SS reboost periods. The settling of the propellant would allow pumping of 

the fluids between the storage tanks and the vehicle, since the location of the ullage and liquid within 

the tanks would be known. This, however would restrict ' tanking operations to periods of reboost, 

which may result in unacceptable operational constraints. 

0 
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The current mission models for the STV are in revision so the number of missions per year could 

range from three to ten. The lower number of missions coupled with the simpler pumping 

arrangement could make the reboost option desirable. The higher flight rates would make the 

arrangement less flexible and impractical. Tables 4-1 and 4-2 show the detailed timelines for tank 

delivery and STV operations for the two options. Table 4-2 summarizes the Space Station resources 

used to perform the STV operations. 

The placement of the tanks for the microgravity, capillary device propellant transfer option is not 

critical. Figure 4-8 shows a potential location which has the benefit of being close to the attitude 

control thrusters (which may help to minimize the SS truss member stresses), and is also consistent 

with micrometeoroicUdebris protection and Bond Number designlperformance considerations. The 

final tank placement should be chosen based on ease of attachment, operations, and center of gravity 

considerations. 

The tank placement for the reboost propellant transfer option is also not critical but must be designed 

and appropriately oriented so that settling and pumping can occur. Figure 4-9 illustrates a possible 

configuration for the reboost option. The "g" level required for proper settling of the fluids to support 

pumping is on the order of 1 x 10-4. Figure 4-10 is a graph of the reboost duratioh versus altitude to 

be gained. The delta between any two altitudes is just the difference in time for a given g level 

between the two altitudes on the initial altitude axis. For example, with a reboost acceleration of 1 x 

10-4 g's, the time required to reboost between 300 km and 350 km is about 8 hours. Reboosts are 

expected approximately every three months although it may be possible to perform smaller reboosts 

more frequently to facilitate STV tanking. 

Due to the large quantities of cryogenic propellants needed to support the larger Code Z missions, 

basing the propellant depot at the Space Station to support Mars and Phobos missions were not 

considered in this study. This decision is based upon operations, safety, logistics, dynamics, and 

stationkeeping considerations. 

4.2.2 PROPFl LANT TANKS ON A CO-ORRITING PI ATFORM, The storage of the propellant and 

the performance of maintenance/ resupply operations on a co-orbiting platform are also an option. 

The operations involved in delivering the propellant tanks to the platform are very similar to the 

delivery of tanks to the Station except that the control zones will not likely be as restrictive. The use of 

the ACEM along with the OMV is baselined, as the ability of the OMV to control such a large structure 

in proximity to a platform is very limited. 
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Additionally, the option to transfer propellant either in a microgravity environment or a reboost 

environment is available. The concerns and operational characteristics are very similar to those of the 

Station as mentioned in Section 4.2.1. 

The possibility of man-tending the platform during periods of high activity or for maintenance will 

require the transfer of the crew either from the Station or direct delivery by the Shuttle. The baseline 

propellant delivery and transfer operations concepts are for remote control and telerobotics. 

CAD drawings have been produced for co-orbiting refueling platforms to satisfy Code Z and M 

propellant requirements. Slight modifications were necessary to the LTCSF tankset design to facilitate 

the 7:l burn ratios for the advanced cryogenic engines planned for Code Z. 

To investigate the impact of a change of propellant with an oxidizer to fuel mass ratio of 6:l to 7:l on 

the overall size of the tankset (within its structure and micrometeoroid/ orbital debris shield design 

envelope) the previously designed lOOklb LTCSF configuration was used as a baseline. The impact 

of using other tankset volumes, up to 200klb is minimal as the ACEM/OMV capability is designed for 

the largest tankset option.The changes were based on the following assumptions: 

*Total stored propellant weight to remain the same (1 00,000 Ibs) 

.LO2 density 70.3 Ibs/ft3@ 20 PSlA 

*LO2 ullage volume 3% 

9LH2 density 4.33 Ibdft3 @ 20 PSIA 

oLH2 ullage volume 5% 

A geometric analysis was performed to determine the changes required in tank sizes for the new ratio. 

This resulted in a stored propellant weight increase for the LO2 of 1,786 Ibs and a weight decrease for 

the LH2 of the same amount (since the total weight must remain the same). 

Next, the changes in volume were calculated giving a volume increase for the LO2 of 25.4 ft3. For 3% 

ullage the total change in volume would be 26.2 113. The calculated volume change of LH2 is 412.5 

ft3. For 5% ullage the total change in volume would be a decrease in volume for the LH2 tank of 

430.1 ft3. 

Finally, the changes in tank sizes as related to the cylindrical section were determined. To 
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accommodate the decreased LH2 volume, the cylindrical section length must be reduced by 3.33 ft or 

39.9 inches and the LO2 tank cylindrical section length would be increased by 0.2 ft or 2.4 inches, to 

accommodate the increase in stored L02. 

Five co-orbiting propellant storage depot concepts have been defined based on the 100,000 Ib. size 

LH2/L02 storage concepts. These were presented in Figures 3-9 through 3-14. Each depot concept 

provides propellant provisioning for each Code Z and S N  Mission Model, with additional propellant 

to account for losses, provide a safety margin, and to provide a minimum propellant inventory at all 

times. 

For example, the free flying co-orbiting concept to provide propellant for the Mars Expedition model 

shown in Figure 3-12 is based upon the peak requirement for thirty-two 100,000 pound tanksets at 

the year 2006. It has tanksets mounted on both sides of the basic platform structure which can be 

accessed by the MRMS's mounted along the structure. There are three arms which can each travel on 

one planer surface without having to turn any corners and an additional arm is specified in order to 

unload tanksets from a docked orbiter bay (if tanksets are launched empty) or from an ACEM/OMV (if 

the tanksets are launched full, and delivered by an expendable vehicle). 

The basic depot itself is based on the 900,000 Ib storage capacity orbital refueling platform concept 

as defined in Reference 1-4. All of the orbital depot concepts are based upon "modular " construction 

using integral numbers of tanksets attached to a 5-meter truss structure. In addition to the LTCSF 

tanksets on each platform, there are mission peculiar (i.e. hydrazine) required storage containers 

shown on some. 

4.3 BASELINED OPTIONS SUMMARY 

Both experimental and vehicle fluid management approaches for the IOC and growth Space Stations 

have been presented. 

Preferred concepts and corresponding transfer and delivery operations have been presented for 

STV propellant provisioning from the SS, based on; 1) STV mission model propellant requirements, 

2) reboost liquid settling and microgravity propellant acquisition methods. These scenarios used the 

OMV/ACEM concept, developed for this study, to translate and dock the LTCSF propellant tankset 

from LEO to the SS. Reboost and microgravity (or surface tension/capillary action) settling methods 

result in comparable overall transfer operation elapsed time, but the reboost method may have a 

detrimental effect on SS users/operations, depending on the mission model and the associated 
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propellant use schedule. 

Provisioning methods of meeting experiment fluid requirements using three fluid carrier design 

concepts have been presented, beginning on the IOC SS with the replacement of ORUs and 

evolving into integrated fluid subsystems/fluid docking interfaces on the growth SS. Assembly 

layouts of the IOC and growth SS have been presented to indicate a possible working configuration to 

accommodate all fluid users. 
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5 
SPACE STATION IMPACTS 

Several design features and capabilities should exist on the Phase I SS to meet current and growth 

fluid management requirements between 1994 and 2016 and beyond. Preliminary hooks and scars 

have been determined for the Phase I SS to accommodate growth. 

The following six (6) Safety Design Considerations for the development of an overall Fluid 

Management concept for the Space Station were considered for the concepts developed during this 

study: 

1. 

2. 

3. 

4. 

5. 

6. 

Separate Fuels and Oxidizers 

Minimize Extravehicular Activity (EVA) 

Design for expedient EVA 

Protect internaVexterna1 depot components from contamination 

Protect experiments from contamination 

Plan for spills/leaks (develop de-contamination procedures for equipment and EVA suits). 

To support experimental fluid and propellant provisioning operations there are many design 

implications on the Space Station. 

There must be truss structure space allocated for several fluid carriers. In addition, there must be 

attachment fittings for the mechanical connection/docking of the fluid carriers. Truss structure beam 

strengthening (or the scarring of the baseline SS truss member design) must be provided where it is 

determined by structural analyses to be needed. This is due to the attachment of large (100 klb. to 

500 klb.) propellant storage tanksets, and the higher resulting stresses which may occur in the truss 

structure during SS attitude controVreboost. 

The mechanical and fluid interface panels for the fluid carriers and propellant tanksets should have 

remote connectldisconnect capability to allow telerobotic RMS activities, which must include electrical 
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connections for power, data monitoring and control. The logistics carrier interfaces on the baseline SS 

should be designed to accommodate and be compatible with Growth SS needs (Le. fluid carriers, 

integrated fluid subsystems, and propellant tanksets). 

The SS must have a Mobile Remote Manipulator System (MRMS) for fluid carrier and experiment 

activities. The use of two MRMSs are recommended, due to propellant tankset handling 

requirements, and the SS requirement that the "payload be captured at all times". The MRMSs could 

be used to: 

unload fluids carriers from the Shuttle (or ELV) and integrate them with SS truss structure 

transport fluid carriers, bottles, tanks, experimental payloads and EVA astronauts 

perform and/or aid astronauts in replenishment activities (e.g. ORUs, buildup of Integrated 

Fluid Subsystems, capturing/docking of free-flying payloads, etc.) 

hold several ORUs simultaneously during EVNIVA to economize "operations" 

To use the MRMS for attached experimental payload servicing on the SS, the MRMS must have 

accommodations for holding full and empty experiment fluid reservoir tanks/bottles so that the arm can 

be free to perform other activities. 

The IOC INS should have the correct fluid interface and software "hook" to allow the addition of new, 

perhaps larger N2 storage tanks. 

The SS attitude control and reboosting capabilities must be designed for a growth in SS mass, and 

considerable changes in the center of mass of the SS. 

5.1 CODE Z MISSIONS 

Space Station impacts for Code Z mission fluid management activities will be minimal. As mentioned 

earlier, the large quantities of propellant required to support the Code Z missions, makes storage of 

these propellants at the Station unlikely. For the purposes of this study, co-orbiting depots were used 

to fulfill Code Z propellant requirements. Operations at these co-orbiting depots (see Section 3.3) 

could be done remotely from the ground and therefore there is little impact on the Station. 

For man-tended operations the Station will be needed for the human accommodations, supplies and 

medical facilities. If these depots are man-tended from the Station, as opposed to the ShU;tal a crew 

transport vehicle will be needed to ferry crew members back and forth. The Station would be required 

d 3; 
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to have storage and refurbishment accommodations for this vehicle. 

5.2 STV MISSIONS 

Propellant Tanksets Attached to the Space Station 

In order to support the STV missions from the Station there must exist the capability to deliver, store 

and transfer propellant. As mentioned earlier, the LTCSF designs for cryogenic propellant storage at 

the Station were used in this study. For placement of these tanksets on the Station there must be 

space allocated along the truss and attachment fittings. Beam strengthening should be used were 

needed. In addition, there must be fluid, power, data, and control lines connecting the tanksets to the 

Station control center and to the STV Hanger. This would be accomplished with interface panel such 

as those shown in Figure 4-1 (Section 4). 

The SS attitude control system must be capable of handling the SS with between 100 and 500 klb. of 

additional weight due to STV propellant storage tanksets. Growth SS aerodynamic drag, center of 

mass, structural, and reboost thrust IeveMschedule must all be considered in the Baseline SS 

attitude control system design. 

Due to the size of the tanksets (i.e. 200klb capacity tanksets) there must be two MRMSs available to 

capture the tankset, move it to its attachment point and secure it. The simultaneous operation of two 

MRMSs will require specialized software "hooks" in the IOC to accommodate upgrades to handle 

these coordinated tasks. 

Software is needed for propellant tankset delivery operations, to monitor the propellant tank status, 

and control all thermodynamic processes, including propellant prechill and transfer. This should 

involve some level of artificial intelligence to free the astronauts from routine monitoring activities, and 

minimize the requirement for human interaction/supervision. 

To deliver the tanksets to the Station an OMV and an ACEM will be needed. The Station must provide 

a servicing bay and storage facility where both pieces of equipment can be refurbished and protected. 

A control station must be made available in the pressurized module to allow an astronaut to perform 

OMV/ACEM activities. Although this could be done from the ground, it is more likely that anything 

entering the Space Station proximity operations zone will have to be controllable from the Station. 

For STV storage, servicing and payload integration there must be a SlV Hanger. This hanger must 

havemwer, data and control lines, servicing equipment and propellant transfer lines running from the 

t anilikts. 
I..- ' 
1 L 1  
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Co-Orbiting Refueling Platform 

A co-orbiting depot for STV mission support will have the same minor Space Station impacts as the 

Code Z depots (see Code Z above). 

5.3 REQUIRED EMERGING AND ENABLING TECHNOLOGIES 

There are several technologies that are required for the realization of cryogenic and storable fluid 

storage, acquisition, and transfer in the LEO environment. 

Fluid Disconnects 

Cryogenic and storable fluid disconnects which may be mated by telerobotic operations will be 

necessary to minimize EVA for fluid carrier delivery and transfer operations. Low-leak fluid disconnects 

have been developed for space applications, but are only designed for non-cryogenic fluids. Both 

storable and cryogenic fluid disconnects should be designed to be part of a fluid/power/data berthing 

panel, which would provide all of the necessary interfaces between the user and either the SS or a 

co-orbiting platform. 

Space -Qualified Refrigeration Systems 

For propellant storage at the SS, if no venting of oxygen or hydrogen boiloff is allowed, a refrigeration 

system must be used to condense all boiloff, and return the propellants to storage temperature and 

pressure. While there has been a considerable amount of research in the last 10 years concerning 

space-qualified cryogenic refrigeration, high capacity units suitable for hydrogen reliquifaction have 

not been tested in space. 

Cryogenic Valves, Pumps, Compressors 

The required flight-qualified components for the control of all storage and transfer functions within a 

propellant storage tankset are not all presently available. Low flow rate Joule-Thompson valves, check 

valves, low head/flowrate pumps, and high pressure gas compressors designed for low maintenance 

applications will be needed. 

Instrumentation 

The instrumentation requirements for propellant and other fluid storage tank monitoring and process 

control are unique due to the lack of substantial gravity. Two-phase flow, mass gauging, and leak 

detection for microgravity, low pressure environments are not readily available. Y s n i  
.I’\&, - 
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6 
CONCLUSIONS AND RECOMMENDATIONS 

The Phase I Space Station, known as Freedom, is regarded as an essential element of NASA's 

continuing effort to ensure America's future in space. The station is required to allow more complete 

human exploration of the solar system. The station will also be an orbiting research laboratory for 

science, technology, and commercial space development. The Phase II or evolutionary Space Station 

(growth version of Phase I) may be used for a variety of purposes in support of NASA's Lunar, LEO, 

Mars and other space exploration missions. The primary purpose of this study was to define fluid 

storage and handling strategieshequirements for various specific mission case studies and their 

associated design impacts on the Space Station. 

Several observations can be made regarding SS related fluid requirements. First, there are a variety of 

fluid users which require a variety of fluids and use rates. Secondly, the cryogenic propellants 

required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must 

accommodate fluids ranging from a high pressure gas or supercritical state fluid to a subcooled liquid 

(and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 

metric tons in the year 2004, and "trail off" to the year 2018, as currently planned. 

The preliminary definition of "Hooks and Scars" to the Phase I Space Station to accommodate fluid 

management requirements between 1994 and 2016 (and beyond), to be supported partly by the 

Phase I I SS, has been completed and documented. As experimental fluid needs grow, they will be 

met by the delivery of fluid carriers to the SS, and possibly the construction of integrated fluid 

subsystems for each fluid (similar to the INS already planned for the IOC SS). 

In providing the SS attached experiments with required fluids, preliminary comparisons have shown 

that the best method utilizes hard fluid lines between each user and a manifold /disconnect panel to 

which each fluid carrier is docked. This capability, however, is not needed at the IOC SS (which 

provides the wide range of fluid use rateshsers with fluids via ORU changeout, and bulk LHe 

replenishing in the case of ASTROMAG) and should only be used for the growth SS if operational and 

economic benefits are shown to exist. 

- r  
' C  

For the experiments which are not attached to (but will receive fluid servicing from) the SS, hard lines 

are obviously unacceptable. Since the recommended growth approach for the attached payloads 
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.. 
uses hard lines within an integrated fluid subsystem architecture, refilling of the unattached payloads 

while they are docked to the SS could be accomplished through an additional fluid/docking interface. 
_ .  

The ASTROMAG experiment is a major user of LHe. A dedicated LHe storage dewar system concept, 

resupplied by the STS or ELV tanker, is recommended. A number of dewars could be incorporated 

into a LHe fluid carrier concept similar to the one shown in Figure 3-2, and be used to provide AXAF, 

LDR, and SlRTF LHe needs as well. The unattached LHe experiments could be docked in the CSF 

near the LHe carrier, connected to it by hard transfer lines using "quick disconnect" fluid lines and 

other required support equipment, and refilled while receiving other required servicing from the CSF. 

It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be 

met by LTCSF LH2/L02 tanksets attached to the SS truss structure. Concepts and corresponding 

transfer and delivery operations have been presented for STV propellant provisioning from the SS. 

For STV storage, servicing, and payload integration there must be an STV hanger, and servicing, 

power, and propellant transfer lines/disconnects. 

Due to the large LH2 and LO2 quantities involved, unmanned co-orbiting refueling platforms have 

been conceptually designed, which are based on LTCSF storage tankset technology for Code 2, 

Planetary Initiative, and possibly STV mission models. 

Preliminary thermodynamic analyses of tankset processes have been presented. Results indicate that 

a 100klb capacity tankset LH2 tank can be prechilled and filled in less than 12 hours. LO2 tank 

prechilling and filling may be done in less than 5 hours. The steady-state boiloff rates for LH2/L02 for 

the 100 and 200klb tanksets have been reported for a range of environments, and are all less than 

0.4% per month by weight (combined LH2/L02). Required ullage pressurant quantities for transfer of 

7500 Ib of LH2 from a storage tankset into a user tank (Le. STV vehicle) have been estimated. 

The ACEM and associated servicing capability will be required to move tanksets from delivev launch 

vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV 

operation are necessary to allow for the combined operation of the ACEM/OMV. 

i ,  

r, 

, .  

,;< 
Reboost settling is not recommended as a baseline mode of operation. Reboost operations of the SS 

could be scheduled to provide acceleration levels required for "settled" transfer of LH2/L02 from the 

SS to an STV propellant tank. However, there are a many other issues that need resolution to allow 

STV propellant provisioning from the SS, such as SS truss structure dynamics, safety, guidance, 

,Iqrni zl ' 
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navigation, and control issues. 

- ,  

To support fluid management activities at the Space Station for the experimental payloads and 

propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant 

tanksets. Substantial beam strengthening may be required. In addition, there must be power, data 

and fluid transfer and control lines, and the SS attitude control system must be designed to facilitate 

changes in SS mass and center of mass/drag. 

The Station must have two Mobile Remote Manipulator Systems (MRMS) and the ACEM for propellant 

handling operations for the STV at the SS. The two MRMSs must have accommodations for holding 

full and empty experiment fluid reservoir tankdbottles, which will also require associated software 

capabilities. 

Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided 

by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management 

activities will be minimal. For man-tended operations the Station will be needed for the human 

accommodations. If these depots are man-tended from the Station, as opposed to the Shuttle, a crew 

transport vehicle will be needed. 

The cryogenic LH2/L02 propellant systems developed under NASA-MSFCs LTCSF Study were 

used as baseline elements for the propellant depot platforms specified in this study. A family of 

“evolvable” refueling platform concepts were defined to meet the STV and Code Z mission model 

requirements. Each platform concept has a capacity appropriate for propellant requirements, with a 

conservative margin. Software will be needed to monitor the tank status, and to control all modes of 

operation. 

There are a number of safety issues that deserve attention, since ultimately the SS must provide a 

safe environment for human inhabitants. Spills, contamination, structural design to minimize the 

possibility of explosions of fluid vessels, safe quantity, and separation distances appear to be the 

primary safety concerns identified during this study. It is not possible to define many of the design 

features necessary to comply with these concerns until definitive, appropriate NASA standards have 

been established for SS safety and operations. 

It-is-hperative that cryogenic propellant storage technology issues be addressed and resolved to . . rloi~ul; 
allow for the successful completion of NASA’s objectives through an integrated infrastructure. 

;*\ ‘ ) I ? ’  
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